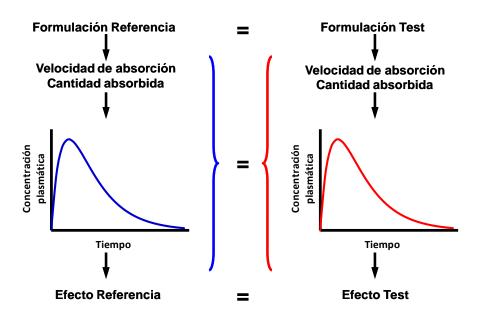
ANEXO DE LA GUÍA PARA LA REALIZACIÓN DE ESTUDIOS DE BIOEQUIVALENCIA PARA MEDICAMENTOS VETERINARIOS: GRÁFICOS Y TABLAS.

AUTOR

■ **Dr. Enrique A. Formentini** (Universidad Nacional del Litoral - UNL - Profesor Adjunto de la Cátedra de Farmacología y Director del Laboratorio de Farmacología y Toxicología de la Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral).

COLABORADORES

Colaboraron en la confección del Anexo las instituciones representadas por las siguientes personas (aparición según orden alfabético):


- Dr. Jorge Errecalde (Universidad Nacional de La Plata UNLP Profesor Titular de Farmacología, Facultad de Ciencias Veterinarias y Facultad de Ciencias Médicas de la Universidad Nacional de La Plata. Académico, Academia Nacional de Agronomía y Veterinaria).
- Dr. Juan Martín Etchegoyen (Cámara de Laboratorios Argentinos Medicinales Veterinarios -CLAMEVET).
- Dr. Carlos Francia (Cámara Argentina de la Industria de Productos Veterinarios CAPROVE).
- Dr. Juan Walter Ostermann (Cámara Argentina de la Industria de Productos Veterinarios -CAPROVE).
- Dr. Sergio F. Sánchez Bruni (Universidad Nacional del Centro de la Provincia de Buenos Aires

 UNCPBA Profesor Asociado Laboratorio de Farmacología de la Facultad de Medicina
 Veterinaria de la Universidad Nacional del Centro de la Provincia de Bs. As. Tandil.
 Investigador independiente del CONICET).
- Dra. Laura C. Sbordi (Servicio Nacional de Sanidad y Calidad Agroalimentaria SENASA -Supervisora Técnica de la Dirección de Productos Veterinarios y Alimentos para Animales. Dirección Nacional de Agroquímicos, Productos Veterinarios y Alimentos).
- Dr. Esteban Turic (Cámara Argentina de la Industria de Productos Veterinarios CAPROVE).

Coordinación del grupo a cargo del Dr. Javier Pardo (Fundación PROSAIA).

ANEXO DE LA GUÍA PARA LA REALIZACIÓN DE ESTUDIOS DE BIOEQUIVALENCIA PARA MEDICAMENTOS VETERINARIOS: GRÁFICOS Y TABLAS.

Figura 1. Representación esquemática del fundamento de un estudio para demostrar bioequivalencia entre una formulación de Referencia y una formulación Test. Si ambas formulaciones son equivalentes farmacéuticos y sus biodisponibilidades (velocidad y cantidad absorbida del principio activo) luego de su administración a la misma dosis molar son similares dentro de límites pre-establecidos, se asume que sus efectos en lo que respecta a eficacia y seguridad son los mismos.

Figura 2. Representación esquemática diseño experimental cruzado de dos secuencias (TR/RT), dos períodos (Período 1/Período 2), dos tratamientos (Referencia y Test), aleatorizado, con una dosis única en cada período, no replicado y balanceado.

	Secuencia 1 (TR)	Secuencia 2 (RT)
Período 1	Testigo₁	Referencia₁
Período 2	Referencia₂	Testigo₂

Figura 3. Representación esquemática de un diseño experimental paralelo. En este diseño participan dos grupos (grupo 1 y grupo 2), con idéntico número de animales cada uno donde un grupo recibe solo una única dosis de un producto distinto del asignado al otro grupo.

Grupo 1	Grupo 2
·	
Testigo	Referencia

Figura 4. Representación esquemática de un diseño experimental replicado de dos secuencias y cuatro períodos.

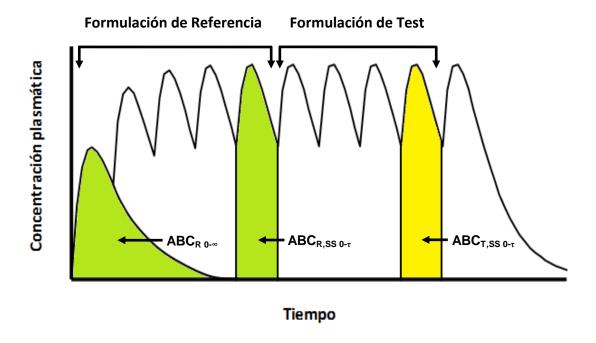
		Secuencia 1 (TRTR)	Secuencia 2 (RTRT)
Período 1		Testigo₁	Referencia ₁
	Replica 1		
Período 2	-	Referencia ₂	Testigo ₂
Período 3		Testigo₁	Referencia₁
	Replica 2		
Período 4	•	Referencia ₂	Testigo ₂

Ecuación 1. Algoritmo propuesto por D. Hauschke & col. (1992) para estimar el número de individuos necesarios para realizar un estudio de bioequivalencia promedio.

$$Si\ 1 < \mu_T/\mu_R < \Theta_S$$
, entonces $N \ge \left[t_{2N-2}^{1-\alpha} + t_{2N-2}^{1-\beta}\right]^2 \left[\frac{CV}{ln\Theta_S - ln(\mu_T/\mu_R)}\right]^2$

$$Si~\Theta_I < \mu_T/\mu_R < 1~, entonces~N \geq \left[t_{2N-2}^{1-\alpha} + t_{2N-2}^{1-\beta}\right]^2 \left[\frac{CV}{ln\Theta_I - ln(\mu_T/\mu_R)}\right]^2$$

donde, μ_R y μ_T son las medias geométricas de los parámetros farmacocinéticos de las formulaciones Referencia y Test respectivamente, $\ln\Theta_S$ y $\ln\Theta_I$ son los logaritmos naturales de los límites superior e inferior para demostrar bioequivalencia, CV esel coeficiente de variación interindividual, t es el estadístico del test unilateral de t, α (0,05) y β (0.20) son los errores de consumidor (5%) y de la industria farmacéutica (20%), 2N-2 es grado de libertad para un diseño experimental cruzado clásico, este valor en un diseño paralelo debe ser reemplazado por N-1.


Tabla 1. Tamaños de muestra (número de individuos) para obtener una potencia estadística del 70%, 80% y 90% y varios valores de coeficientes de variación interindividual (CV%) cuando se aplica un modelo multiplicativo para demostrar bioequivalencia donde; $\alpha = 0.05$ (5%), $\Theta_1 = 0.8$ y $\Theta_S = 1.25$. Los valores no enteros fueron redondeados a su valor inmediato superior y se presentan en itálica.

CV (%)	Potencia (%)	$\mu_{\mathrm{T}}/\mu_{\mathrm{R}}$									
(70)		0.85	0.90	0.95	1.00	1.05	1.10	1.15	1.20		
5.0	70	10	6	+	4	4	4	6	16		
7.5		16	6	6	4	6	6	10	34		
10.0		28	10	6	6	6	8	16	58		
12.5		42	14	8	8	8	12	24	90		
15.0		60	18	10	10	10	16	32	128		
17.5		80	22	12	12	12	20	44	172		
20.0		102	30	16	14	16	26	56	224		
22.5		128	36	20	16	20	30	70	282		
25.0		158	44	24	20	22	38	84	344		
27.5		190	52	28	24	26	44	102	414		
30.0		224	60	32	28	32)	52	120	490 ′		
5.0	80	12	6	4	4	4	6	8	22		
7.5		22	8	6	6	6	8	12	44		
10.0		36	12	8	6	8	10	20	76		
12.5		54	16	10	8	10	14	30	118		
15.0		78	22	12	10	12	20	42	168		
17.5		104	30	16	14	16	26	56	226		
20.0		134	38	20	16	18	32	72	294		
22.5		168	46	24	20	24	40	90	368		
25.0		206	56	28	24	28	48	110	452		
27.5		248	68	34	28	34	58	132	544		
30.0		292	80	40	32	38	68	156	642		
5.0	90	14	6	4	4	4	6	8	28		
7.5		28	10	6	6	6	8	16	60		
10.0		48	14	8	8	8	14	26	104		
12.5		74	22	12	10	12	18	40	162		
15.0		106	30	16	12	16	26	58	232		
17.5		142	40	20	16	20	34	76	312		
20.0		186	50	26	20	24	44	100	406		
22.5		232	64	32	24	30	54	124	510		
25.0		284	78	38	28	36	66	152	626		
27.5		342	92	44	34	44	78	182	752		
30.0		404	108	52	40	52	92	214	888		

Tabla 2. Tamaños de muestra (número de individuos) para obtener una potencia estadística del 70%, 80% y 90% y varios valores de coeficientes de variación interindividual (CV%) cuando se aplica un modelo multiplicativo para demostrar bioequivalencia donde; $\alpha = 0.05$ (5%), $\Theta_1 = 0.7$ y $\Theta_S = 1.43$. Los valores no enteros fueron redondeados a su valor inmediato superior y se presentan en itálica.

CV (%)	Potencia (%)	μ_T/μ_R 0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35
15.0	70	46	14	8	6	6	6	6	6	8	10	14	26	68
20.0		80	24	12	8	8	8	8	8	10	14	24	44	118
25.0		122	34	18	12	10	10	10	12	14	22	34	66	180
30.0		172	48	24	16	12	12	12	14	20	30	48	94	256
35.0		230	64	32	20	16	16	16	20	26	38	64	124	342
40.0		296	80	40	26	20	20	20	24	32	48	80	160	438
45.0		366	100	48	30	24	24	24	28	40	60	100	198	54-
50.0		444	120	58	36	30	28	30	34	48	72	120	238	658
55.0		524	142	68	42	34	32	34	40	56	84	142	282	780
60.0		610	164	80	50	40	38	40	46	64	98	164	328	906
15.0	80	60	18	10	8	6	6	6	8	8	12	18	34	88
20.0		104	30	16	10	8	8	8	10	12	18	30	56	15-
25.0		160	44	22	14	12	10	12	14	18	28	44	86	236
30.0		226	62	30	20	16	14	16	18	26	38	62	122	336
35.0		302	82	40	26	20	18	20	24	32	50	82	162	448
40.0		388	106	52	32	24	22	24	30	42	62	106	208	576
45.0		482	130	62	38	30	28	30	36	50	78	130	258	71-
50.0		582	158	76	46	36	32	34	44	62	94	158	312	86-
55.0		688	186	90	54	42	38	40	50	72	110	186	370	1022
60.0		802	216	104	62	48	44	46	58	84	128	216	430	1190
15.0	90	82	24	12	8	8	6	8	8	10	16	24	46	122
20.0		144	40	20	14	10	10	10	12	16	24	40	78	212
25.0		220	60	30	18	14	12	14	18	24	36	60	120	326
30.0		312	86	42	26	18	18	18	24	34	50	86	168	46-
35.0		418	114	54	34	24	22	24	32	44	68	114	224	620
40.0		536	144	70	42	30	28	30	40	56	86	144	288	796
45.0		666	180	86	52	38	34	38	48	70	106	180	358	988
50.0		806	216	104	62	46	40	44	58	84	128	216	432	1196
55.0		954	256	122	74	52	48	52	68	98	152	256	512	1416
60.0		1108	298	142	86	62	54	60	80	114	176	298	594	1646

Figura 5. Diseño experimental para demostrar bioequivalencia mediante condiciones de estado de equilibrio estacionario.

donde $ABC_{R\ 0-\infty}$ es el area bajo la curva del producto referencia si este hubiese sido administrado en una única dosis, $ABC_{R,SS\ 0-\tau}$ y $ABC_{T,SS\ 0-\tau}$ son las áreas bajo la curva de los productos Referencia y Test estimadas durante los intervalos entre administraciones(0- τ), luego de alcanzarse para uno y otro el estado de equilibrio estacionario.

Bibliografía:

D. Hauschke & coll. (1992). Sample size determination for bioequivalence assessment using a multiplicative model. *J. Pharmacokin. Biopharm.* 20:557-561.

Diletti E, Hauschke D, Steinijans VW. (1992) Sample size determination for bioequivalence assessment by means of confidence intervals. Int J Clin Pharmacol Ther Toxicol; (30), Supplement N°1. pp S51-58.